
Abstract-We studied the basic shapes of surface MUAP's of the 
FDI muscle using a wavelet matching technique. By averaging 
surface EMG's triggered by the intramuscular EMG, we found 
the surface MUAP's matched very well with the selected 
wavelets. It provides us a potential way to quantify the surface 
EMG by estimating the number of the action potentials 
contained within it. 
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I. INTRODUCTION 

 
The surface electromyography (sEMG) is the product of a 
superposition of motor unit action potential (MUAP) trains 
from active motor units (MUs) having fibers in the vicinity of 
the recording electrodes. For the intramuscular EMG, 
recorded MUAP's are often distinct, so it is possible to know 
the number of the action potentials by counting the action 
potential spikes. Even at very high force levels, when action 
potential superposition occurs, we still can estimate the 
number of action potentials by EMG decomposition 
techniques, which are designed to allow the separation of 
overlapped waveforms. [1][2][3][4] etc. Because of large 
detection surfaces and greater superposition of action 
potentials, it is hard to estimate the number of the action 
potentials recorded by the  surface EMG.  Moreover, due to 
large detection surfaces and filtering effect of the intervening 
tissues, the surface MUAP shapes are no longer as distinct as 
they are when recorded using an intramuscular electrode. So, 
calculating the number of  action potentials present in the 
surface EMG is inherently more difficult. In spite of these 
difficulties, such calculations allow an estimate of the total 
activity in the motoneuron pool. From this, we can calculate 
muscle force more precisely. In this paper, we seek to study 
the identification and counting of surface MUAP's using 
wavelet matching technique. 
 

II. SURFACE MUAP'S AND WAVELETS 
 
     EMG signals are composed of different MUAP's. Each 
displays an impulse property, which means that it changes in 
a rapid fashion. Due to this property, the EMG signal is well 
suited to wavelet analysis. The shape of each MUAP is 
determined by the relative position of the recording electrode 
and the muscle fibers that belong to the same MU. For 
different MU's,  the muscle fiber arrangements are potentially 
different.  
     For a point recording (such as a needle), these differences 
can be recorded by the electrode, so the recorded MUAP's 
have various shapes. Minor position changes will cause 
distinct variations of the recorded intramuscular MUAP 
shapes. For surface recordings, the detection surface is large 
and distant from the active MU's. Consequently, differences 
in muscle fiber arrangements are not as evident. Hopefully, 

we can use several simple shapes to represent all the MUAPs' 
basic shapes.  
     In addition, due to the filtering effects of the volume 
conductor, different MUAP's detected with surface technique 
can be treated as dilated and attenuated versions of one (or at 
least a small number of) basic shapes. MUAP's due to deeper 
motor units are dilated with respect to those due to more 
superficial ones. Therefore, the global surface EMG signal 
can be modeled as the superposition of delayed and scaled 
versions of several basic components. This leads to the idea 
of using wavelet technique to analyze surface EMG signal.  
     Accordingly, different wavelets were chosen to match the 
shape of the signal detected. In an ideal case, the second 
order Hermite-Rodriguez (HR) function and first order HR 
function match very well with a simulated double differential 
and single differential detected MUAP. [5][6][7] The second 
order HR function can be used to match the semiwave 
making up an asymmetric MUAP. [8] Based on this idea, in 
this study, by analyzing real surface EMG data, we try to find 
what kinds of wavelets can be employed as basic surface 
MUAP templates for the First Dorsal Interosseous (FDI) 
muscle. 
 

III. EXPERIMENTAL SETUP 
 
     To minimize noise, a differential detection configuration 
was employed. Single differential detection is the most 
commonly used technique. The electrode is Delsys Inc. 
Single Differential Electrode DE-2.1. It has two parallel 
detection bars, with each bar 1cm in length and 1mm in 
width. The inter distance between two bars is 1cm.  
 

 
 

     Fig. 1. Experiment setup 
 
     11 subjects, 7males, 4 female, aged from 25 to 47, with no 
signs of neuromuscular disorders, participated in this study. 
MU's from FDI muscles were investigated. Subjects were 

A STUDY OF SURFACE MOTOR UNIT ACTION POTENTIALS IN  
FIRST DORSAL INTEROSSEUS (FDI) MUSCLE 

 
Ping Zhou, W. Zev Rymer, Nina Suresh & Liqun Zhang  

Biomedical Engineering Department, Northwestern University 
Rehabilitation Institute of Chicago, Sensory Motor Performance Program, Chicago, IL, USA, 60611 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
A Study of Surface Motor Unit Action Potentials in First Dorsal
Interosseus (FDI) Muscle

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Biomedical Engineering Department Northwestern University
Rehabilitation Institute of Chicago Sensor Motor Performance
Program Chicago, IL 60611

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



seated with their forearm resting comfortably on an arm base. 
The wrist, forearm, three medial fingers and thumb were also 
secured to the base. The index finger made contact with the 
load cell via a custom fit ring. (Fig. 1) Subjects were asked to 
generate a very little isometric force in the FDI muscle. Both 
surface EMG and fine wire EMG were collected 
simultaneously. The surface electrode was placed in a similar 
position in each subject by marking the FDI borders. The 
surface electrode was positioned  between the motor point 
and the tendon insertion and along the longitudinal midline of 
the muscle. The longitudinal axis of the electrode was aligned 
parallel to the length of the muscle fibers.  
     Before each experiment, we used the electrical stimulation 
technique to identify the motor point of the FDI muscle. 
EMG signals are amplified by a gain of 50K (Bagnoli-4 EMG 
System, Delsys Inc.) with a frequency bandwidth of 20-
450Hz for surface EMG and 20-2000Hz for intramuscular 
EMG. Both surface and intramuscular EMG were displayed 
on an oscilloscope. The two channels' EMG signals were 
digitized with a sampling frequency of 5KHz using a data 
acquisition system(CED1401plus). The single MUAP on 
surface EMG was characterized by averaging the surface 
EMG signal triggered by the occurrence of a single MU spike 
in the intramuscular EMG signal. During this process, we 
need to carefully check the intramuscular EMG and to 
discard those signals which contained superimposed 
potentials. Then we averaged the surface EMG 6ms before 
and 12ms after the event signals of every MU. (Fig.2) In this 
way, we can describe the basic surface MUAP templates of 
the FDI muscle.  

 

 
 

Fig. 2. An example of MUAP's on skin surface (top) 
and their average (bottom). 

 
 

IV. RESULT 
 

     The experimental result shows that, for one subject, we 
detect only one surface MUAP template. All the detected 

surface MUAP's  are  dilated   or  attenuated   versions  of  
this  basic shape. 

 
(a) A MUAP (dotted line) along with the HR1 wavelet (solid line). 

The two curves are well matched with a scale value λ =7.8. 

 
(b) A MUAP (dotted line) along with the HR2 or Mexican Hat 

wavelet (solid line). The two curves are well matched with a scale 
value λ =12 

 
(c) A MUAP (dotted line) along with the Symlet4 wavelet (solid line). 

 
Fig. 3. Detected surface MUAP's (dotted lines) of FDI are shown along with 
the wavelets (solid line). 
 
     For all the 11 subjects, the surface MUAP's for FDI 
muscle typically showed three phases. We use HR1, HR2 (or 



Mexican Hat) and Symlet4 wavelets to represent their basic 
shapes. HR function of order n is proportional to the n-th 
derivative of a Gaussian function. Its expression is: 
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Accordingly, the expressions of HR function of order 1 
(HR1) and 2 (HR2) are: 
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where, 1k  and 2k  are normalization factors. Symlet family 
wavelets are compactly supported orthogonal wavelets. It has 
no explicit expression.  
     If we carefully choose the scale value, the detected surface 
MUAP's are well matched with these three wavelets. Fig. 3 
shows an example of this matching.  
 

 
V. DISSCUSSION 

 
     There are many factors affecting the shape of surface 
MUAP, including the electrode configuration, location and 
orientation, the architecture of the muscle and tissues 
between the active fibers and the electrode and some  
physiological and biochemical events. For example, the 
signal detected with a differential technique is influenced by 
the angle between the electrode direction and the signal 
propagation direction. If they are not parallel each other, we 
will get an asymmetric shape. From this point of view, the 
results we get are the representations of the overall effect of 
all relevant factors affecting the shape of surface MUAP. But 
it should be acknowledged that the three wavelets are only 
applicable for the specific electrode DE-2.1, and only for the 
FDI muscle. If we change the electrode configuration or 
study some different muscle, we may well extract different 
surface MUAP wavelets.   
     Furthermore, the FDI is a small muscle. Compared with 
the muscle size, the detection surface of the electrode we use 
is relatively large. In addition, for the FDI muscle, large and 
small motor units are uniformly distributed throughout the 
muscle, and the muscle fibers making up a motor unit may be 
widely dispersed. [9] This explains why we only extract just  
one template for one subject. All the differences among 
detected MU's are obscured compared with the large 
detection surface.   
     During the experiment, the FDI muscles contraction was 
set at a very low force level. At higher forces, new MU's will 
be recruited. If we study the surface MUAP templates 
recruited at a higher force level. Hopefully, we still can use  
the same wavelet to represent them. 
     Because of the property of the EMG signal, it is 
potentially suitable for time frequency analysis. The Wavelet 
Transform (WT) is a linear time frequency method towards 
the multi-resolution analysis of the signal. It produces outputs 
similar in theory to those of matched filters. [10] In order to 

maximize the output at the location and scale of a signal of 
interest, it is necessary for the wavelet used in the 
multiresolution analysis to "match" the signal of interest. For 
the surface EMG signals, if we choose the wavelets which 
match the detected MUAP's, we can get the maximum energy 
concentration.  Even  at  low signal-to-noise ratio (SNR) or at  

 
(a) A sample of  superposed EMG signal 

 
(b) Decompose (a) into 4 Symlet family wavelets at 

 different scales and locations 

 
 (c)  The superposition of four wavelets (solid line) along with the 

superposed EMG (dotted line) 
 

Fig. 4. An example of estimating the MUAP's contained in sEMG using 
wavelet matching technique 



partially MUAP superposition levels, the individual MUAP 
can still be identified using matched WT. 
     A considerable advance has been made in quantitative 
EMG, mainly for intramuscular EMG's. Pioneering work was 
done by Buchthal and his colleagues on MUAP parameters. 
[11]. But this analysis can only be performed at very weak 
effort. At high force levels, the individual MUAP can no 
longer be identified and methods are required to quantify the 
interference patterns.  
     Several attempts have been made to obtain reliable 
methods for analyzing the interference patterns, including 
power spectrum analysis, analysis of zero crossings per unit 
time, analysis of integrated electrical activity as well as turns 
amplitude (T&A) analysis and its modifications. [12][13][14] 
etc. For intramuscular EMG, because of the tiny detection 
point, the number of the detected MU's is small. Even at high 
force level, we can estimate the number of the action 
potentials by decomposition of the interference pattern.   
    As for surface EMG, due to the high superposition of the 
action potentials, it is very difficult to decompose 
interference patterns. Usually, we use Root Mean Square 
(RMS) value or mean rectified amplitude to analyze surface 
EMG. It is generally agreed that when rectified and 
sufficiently smoothed, the amplitude of the surface EMG of a 
muscle is qualitatively related to the amount of force muscle 
generates. So, we can use RMS value to estimate the force. 
However, an accurate quantitative relationship remains 
elusive.  
     Surface EMG is noninvasive, and convenient. More 
important, surface EMG represents the total activity of the 
motoneuron pool and it is more appropriate for the 
neuromuscular system study. If we can estimate the number 
of the action potentials contained within the surface EMG 
signal, it will give us a potential way to quantitatively analyze 
surface EMG signals, which should be more appropriate. The 
result of our experiment shows it is feasible. Because if we 
can use a small number of wavelets to represent all the 
possible action potentials recorded by the surface electrode, 
estimating the number of the action potentials will convert to 
a pattern recognition problem. We can estimate the number of 
contained action potentials by extracting an already known 
pattern from it. Fig. 4 shows an example of how a  
superimposed signal (Fig. 4, a) can be decomposed into 4 
Symlet family wavelets at 4 different scales and locations. 
(Fig. 4, b) It is clear that the summation of the 4 wavelets 
match very well with the superimposed EMG (Fig. 4, c), 
which shows the decomposition is reasonable.   
 

VI. CONCLUSION 
 
     Due to the large detection areas of the surface electrodes   
and the filtering effects of the volume conductor, it is 
possible to use a small number of wavelets to represent all the 
possible surface MUAP's. This gives us a potential way to 
estimate the force muscle generates and study the 
motoneuron pool activity by estimating the number of the 
action potentials contained within surface EMG. 
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